Recent News
New associate dean interested in helping students realize their potential
August 6, 2024
Hand and Machine Lab researchers showcase work at Hawaii conference
June 13, 2024
Two from School of Engineering to receive local 40 Under 40 awards
April 18, 2024
Making waves: Undergraduate combines computer science skills, love of water for summer internship
April 9, 2024
News Archives
Maximizing the Spread of Influence in a Social Network
February 19, 2004
Date: Thursday, February 19th, 2004
Time: 11am-12:15pm
Location: Woodward 149
David Kempe, <kempe@cs.washington.edu>
Department of Computer Science and Engineering, University of Washington
Abstract: A social network - the graph of relationships and interactions within a group of individuals - plays a fundamental role as a medium for the spread of information, ideas, and influence among its members. An idea or innovation will appear - for example, the use of cell phones among college students, the adoption of a new drug within the medical profession, or the rise of a political movement in an unstable society - and it can either die out quickly or make significant inroads into the population. The resulting collective behavior of individuals in a social network has a long history of study in sociology. Recently, motivated by applications to word-of-mouth marketing, Domingos and Richardson proposed the following optimization problem: allocate a given "advertising" budget so as to maximize the (expected) number of individuals who will have adopted a given product or behavior. In this talk, we will investigate this question under the mathematical models of influence studied by sociologists. We present and analyze a simple approximation algorithm, and show that it guarantees to reach at least a 1-1/e (roughly 63%) fraction of what the optimal solution can achieve, under many quite general models. In addition, we experimentally validate our algorithm, comparing it to several widely used heuristics on a data set consisting of collaborations among scientists. (joint work with Jon Kleinberg and Eva Tardos)